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概要
有限テンソル圏が作用する特定の条件を満たすアーベル圏は完全加群圏と呼ばれ，特に直既約
なものの分類は盛んに行われている．本稿では pointed Hopf 代数の中でも基本的なクラスであ
る lifting of quantum linear space の表現圏上の直既約完全加群圏を全て与える方法を述べる．

1 導入
Hopf 代数はその発端であるリー群のコホモロジー環の構造の研究をはじめ，現在では代数群や量
子群など数多くの分野で重要な存在となっている．その顕著な性質として表現のなす圏がテンソル積
と双対空間をとる操作で閉じている点が挙げられる．この性質を抽象化したものはテンソル圏と呼
ばれ，TQFTによる位相不変量の構成に代表される種々の応用を背景に活発に研究が行われている．
加えてテンソル圏は直和を和，テンソル構造を積とみることにより，環の概念の圏論における対応物
とみなせる．環を研究する際それが作用する加群の概念が重要であったように，テンソル圏の研究に
おいてはそれが作用する加群圏の概念が基本的役割を果たす．さてモジュラー表現論に知られるよう
に，半単純でない代数の表現を調べることには特有の難しさがあるのであった．Etingof-Ostrik はそ
れまでよく調べられていた半単純な有限テンソル圏上の理論を，非半単純な有限テンソル圏上へ拡張
するため完全加群圏と呼ばれるクラスを導入した [EO]．特に完全加群圏は直既約な完全加群圏たち
の直和へと分解する．加群論における既約表現の分類と同様，直既約完全加群圏の分類はテンソル圏
論における中心的な課題となっている．本稿では特に有限次元 Hopf 代数の有限次元表現のなす圏上
の直既約完全加群圏の分類について掘り下げる．最終的には pointed Hopf 代数の中でも基本的なク
ラスである lifting of quantum linear space H の表現圏上での分類に関し得られた結果を述べる．

2 Hopf 代数とテンソル圏
以下では k を標数 0 の代数閉体とし，ベクトル空間やテンソル積などはすべて k 上のものとする．
まず代数 A (多元環とも呼ばれる)とは，線形写像 m : A⊗A→ A, µ : k → A を備えたベクトル空間
で結合律m◦(m⊗id) = m◦(id⊗m)と単位律m◦(µ⊗id)(1⊗a) = a = m◦(id⊗µ)(a⊗1) (a ∈ A)
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を満たすものをいうのであった．この積 m の双対的な概念である余積 ∆，単位 µ の双対である余
単位 ε，逆元をとるような操作であるアンチポード S を備えた代数を Hopf 代数という．より明示
的な定義は以下の通りである．

定義 2.1. Hopf代数とは線形写像たち ∆: H → H ⊗H，ε : H → k，S : H → H を備えた代数で

• (∆⊗ id) ◦∆ = (id⊗∆) ◦∆.

• (ε⊗ id) ◦∆(h) = 1⊗ h, (id⊗ ε) ◦∆(h) = h⊗ 1.

• ∆, ε が代数射である．
• m ◦ (S ⊗ id) ◦∆ = µ ◦ ε = m ◦ (id⊗ S) ◦∆.

を満たすもののことをいう．

例 2.2. 以下は Hopf 代数である．

• 基礎体 k．構造射は ∆(r) = r(1⊗ 1), ε(r) = r, S(r) = r (r ∈ k).
• 群環 kG．構造射は ∆(g) = g ⊗ g, ε(g) = 1, S(g) = g−1 (g ∈ G).

• 多項式環 k[T ]．構造射は ∆(T ) = T ⊗ 1 + 1⊗ T, ε(T ) = 0, S(T ) = −T .
• 普遍包絡代数 U(g)．構造射は ∆(x) = x⊗ 1 + 1⊗ x, ε(x) = 0, S(x) = −x (x ∈ g)．ただ
し S は反代数射となるように定める．

• タフト Hopf 代数 Tq := 〈g, x | gN = 1, xN = 0, gx = qxg〉．ただし q は 1 の原始 N 乗根．
構造射は∆(g) = g⊗g,∆(x) = x⊗1+g⊗x, ε(g) = 1, ε(x) = 0, S(g) = g−1, S(x) = −g−1x.

ただし S は反代数射となるように定める．
• 小さな量子群 uq(sl2) := 〈g, x, y | gN = 1, xN = 0 = yN , gx = q2xg, gy = q−2yg, xy −
q2yx = 1−g−2〉. ただし q は 1 の原始 N 乗根で N は奇数．構造射は ∆(g) = g⊗g,∆(x) =

x⊗ 1 + g−1 ⊗ x,∆(y) = y ⊗ 1 + g−1 ⊗ y, ε(g) = 1, ε(x) = 0, ε(y) = 0, S(g) = g−1, S(x) =

−gx, S(y) = −gy.

さて Hopf 代数の顕著な性質としてその表現についてが挙げられる．Hopf 代数 H はその構造射
ε,∆, S を利用することで，基礎体，表現のテンソル積，表現の双対空間に次のように表現が入る．

• 基礎体 k は，作用 h.r = ε(h)r (r ∈ k) により H-加群．
• H-加群 V,W のテンソル積 V ⊗W は，作用 h.(v ⊗ w) =

∑n
i=1 hi1v ⊗ hi2w (h ∈ H, v ∈

V,w ∈W ) により H-加群．ここで ∆(h) =
∑n
i=1 hi1 ⊗ hi2 と表示している．

• H-加群 V の双対空間 V ∗ は，作用 (h.f)(v) = f(S(h).v) (h ∈ H, f ∈ V ∗, v ∈ V ) により
H-加群．

以下では Hopf 代数 H の有限次元表現のなす圏を Rep(H) と書く．まず Rep(H) は k を単位対
象，⊗ をモノイダル積としてモノイダル圏をなす．さらに各 V ∈ Rep(H) が有限次元であることか
ら，その基底を v1, · · · , vn, その双対基底を v∗1 , . . . , v

∗
n と書き

evV : V ∗ ⊗ V → k
f ⊗ v 7→ f(v),

,
coevV : k → V ⊗ V ∗

1 7→
∑
i=1 vi ⊗ v∗i



と定めれば，

V ∼= k⊗ V
coevV ⊗id−→ V ⊗ V ∗ ⊗ V

id⊗evV−→ V ⊗ k ∼= V = V
id−→ V

V ∗ ∼= V ∗ ⊗ k id⊗coevV−→ V ∗ ⊗ V ⊗ V ∗ evV ⊗id−→ k⊗ V ∗ ∼= V ∗ = V ∗ id−→ V ∗

を満たす．このような性質を満たす evV , coevV が存在するとき V ∗ は V の左双対対象と呼ばれ
る．同様に右双対対象の概念も定義される．任意の対象が右双対対象も左双対対象も持つモノイダ
ル圏を剛モノイダル圏という．加えて剛モノイダル圏 C が 有限アーベル圏 (e.g. ある有限次元代数
の有限次元表現のなす圏と圏同値) であり，モノイダル積 ⊗ が射について双線形かつ単位対象 1 が
HomC(1,1) = k という条件を満たすとき，これを 有限テンソル圏 という．特に有限次元 Hopf 代
数 H について Rep(H) は有限テンソル圏である．

3 テンソル圏上の加群圏
さて，環を調べる際にそれが作用する加群の概念が重要であったように，テンソル圏論においてもそ
れが作用する加群圏と呼ばれる概念は基本的である．以下では有限テンソル圏 C = (C,⊗, α,1, ℓ, r)
をとり固定する．

定義 3.1. C 上の加群圏とは，アーベル圏 M，関手 ▷ : C ×M → M，自然同型 (mX,Y,M : (X ⊗
Y )▷M → X ▷ (Y ▷M))X,Y ∈C,M∈M，自然同型 (lM : 1▷M →M)M∈M の組 (M,▷,m, l) で，

• 任意の X,Y, Z ∈ C,M ∈ M について，
((X ⊗ Y )⊗ Z) ▷M

(X ⊗ (Y ⊗ Z)) ▷M (X ⊗ Y ) ▷ (Z ▷M)

X ▷ ((Y ⊗ Z) ▷M) X ▷ (Y ▷ (Z ▷M))

αX,Y,Z
▷id

m
(X⊗Y ),Z,M

mX,(Y ⊗Z),M mX,Y,(Z▷M)

id▷mY,Z,M

(X ⊗ 1)▷M X ▷ (1▷M)

X ▷M

rX▷id

mX,1,M

id▷lM

が可換．
• ▷ : C ×M → M が射について双線形．
• 各 X ∈ C について，X ▷− : M → M が完全列を保つ．

という条件を満たすもののことをいう．

環上の加群論での加群準同型，直和，直既約といった基本的な概念の加群圏バージョンも次のよう
に定義される．

定義 3.2. 左 C-加群圏 (M,▷,m, l), (M′,▷′,m′, l′)に対して，C-加群関手とは，関手 F : M → M′，



自然同型 (sX,M : F (X ▷M) → X ▷′ F (M))X∈C,M∈M の組 (F, s) で，

F ((X ⊗ Y ) ▷M)

F (X ▷ (Y ▷M)) (X ⊗ Y ) ▷′ F (M)

X ▷′ F (Y ▷M) X ▷′ (Y ▷′ F (M))

F (mX,Y,M
) s

(X⊗Y ),M

sX,(Y ▷M) m′
X,Y,F (M)

id▷sY,M

,
F (1 ▷M) 1 ▷′ F (M)

F (M)

F (l
M )

s1,M

l
′ F (M

)

が任意の X,Y ∈ C,M ∈ M について可換であり F : M → M′ が射について線形なものをいう．

C-加群圏M1,M2 の間に圏同値である加群関手が存在するとき，M1 とM2 は C-加群圏同値で
あるといいM1 'C M2 とかく．C 上の加群圏M1,M2 について，直積圏M1 ×M2 は C-作用を
対角に定めることで C 上の加群圏となる．このようにしてできる加群圏を M1 とM2 の直和とい
いM1 ⊕M2 と書く．

定義 3.3. C-加群圏M が，任意の C-加群圏M1 6= 0,M2 6= 0 についてM 6'C M1 ⊕M2 となる
とき，M は 直既約 であるという．

次に加群圏の例を見るため準備を行う．以下では H を有限次元 Hopf 代数とする．

定義 3.4. 代数 A が線形写像 ρ : A→ H ⊗A を備えていて，

• (∆⊗ id) ◦ ρ = (id⊗ ρ) ◦ ρ．
• (ε⊗ id) ◦ ρ(a) = 1⊗ a (a ∈ A)．
• ρ は代数射．

を満たすとき A を H-余加群代数 という．

さて H の表現 X，H-余加群代数 A の表現 V に対し，テンソル積 X ⊗ V に

a.(x⊗ v) =

n∑
i=1

hix⊗ aiv

（ここで x ∈ X, v ∈ V で，a ∈ A は ρ(a) =

n∑
i=1

hi ⊗ ai と表示している．）

と作用を定めると，X ⊗ V は A の表現をなす．

例 3.5. H-余加群代数 A の有限次元表現のなす圏 Rep(A) は作用

X ▷ V := X ⊗ V

により，Rep(H) 上の加群圏である．

ところで，アーベル圏 A の対象 X ∈ A が射影的というのは HomA(X,−) が完全列を保つときを
いうのであった．C 上の加群圏M が，任意の射影的対象 X ∈ C と任意の M ∈ M に対し X ▷M

が射影的という性質を満たすときM は 完全 と呼ばれる．このクラスはよく調べられていた半単純
な有限テンソル圏上の加群圏の理論を，正標数の有限群の表現圏などの非半単純な有限テンソル圏上



に拡張する目的で Etingof-Ostrik により [EO] で導入された．特に完全加群圏は直既約完全加群圏
に分解する [EO, Proposition 3.9]．よって与えられた有限テンソル圏 C に対して，

C 上の直既約完全加群圏を分類せよ

という問題が自然に生じる．驚くべきことに任意の有限次元 Hopf 代数 U の表現圏 Rep(U) 上の直
既約完全加群圏は例 3.5の形ですべて得られる．より精密にいうと以下が成立する．

事実 3.6 ([AM, Theorem 3.3]). 有限次元 Hopf 代数 H，Rep(H) 上の直既約完全加群圏M に対
して，ある右単純 H-余加群代数 A が存在して，

M 'Rep(H) Rep(A).

ここで 右単純 H-余加群代数 A というのは，自明なものしか ρ(I) ⊂ H ⊗ I を満たす右イデアル I

を持たない H-余加群代数 A のことをいう．上記の事実から Rep(H) 上の直既約完全加群圏の分類
は，右単純 H-余加群代数の分類へと帰着できる．以降はこの右単純 H-余加群代数へ焦点を当てる．

4 分類
右単純 H-余加群代数を全て得るにはどうすればよいだろうか．ここでは我々が過去に行った小さ
な量子群 U = uq(sl2) 上での分類手法 [NSS]を紹介する．

4.1 フィルトレーションと次数付け
Hopf 代数 H の単純部分余代数 (i.e. 部分余代数が自明な H の部分余代数) 全ての和を H の余根
基といい H0 で表す．G(H) := {g ∈ H | ∆H(g) = g ⊗ g, εH(g) = 1} の元は group-like 元と呼
ばれる．H0 = kG(H) となるとき，H は pointed であるという．このとき

Hn := ∆−1
H (H ⊗Hn−1 +H0 ⊗H)

と定めることで H はフィルトレーション付き Hopf 代数をなす（証明は例えば [Rad, Lemma 7.9.3]

を参照）．このフィルトレーションを 余根基フィルトレーション という．余根基フィルトレーショ
ンから誘導される自然な次数付けにより得られる次数付き Hopf 代数を gr(H) と書く．H-余加群代
数 (A, ρA) に対して，

An := ρ−1
A (Hn ⊗A)

と定めれば A はフィルトレーション付き H-余加群代数となる [Mom10, Lemma 4.1]．このフィル
トレーションから誘導される自然な次数付けにより得られる gr(H)-余加群代数を gr(A) と書く．
gr をとる操作をすることにより，Hopf 代数の構造を幾分か簡単にすることができる．

例 4.1. 小さな量子群 H = uq(sl2) = 〈g, x, y | gN = 1, xN = 0 = yN , gx = q2xg, gy =

q−2yg, xy − q2yx = 1 − g−2〉 は pointed Hopf 代数で G(H) = 〈g〉. その余根基フィルトレーショ
ンは Hn = span{gkxiyj | k, i, j ∈ {0, . . . , N − 1}, 0 ≤ i+ j ≤ n} で与えられ，gr(H) = 〈g, x, y |
gN = 1, xN = 0 = yN , gx = q2xg, gy = q−2yg, xy − q2yx = 0〉 となる．



4.2 分類の方針
おおまかな方針は，構造を簡単化した Hopf 代数 gr(H) 上で次数付き単純余加群代数を分類をし
た後，次数付きでない余加群代数へと構造を持ち上げるといったものである．より具体的には以下の
手順を辿る．

Step 1. 次数付き 右単純 gr(H)-余加群代数を全て得る．
Step 2. Step 1 で得た L に対して，L ∼= gr(A) となる 右単純 gr(H)-余加群代数 A を全て得る.

Step 3. Step 2 で得たものの Rep(gr(H))-加群圏としての森田同値を判定する．
Step 4. Step 3 で得たものをコサイクル変形することで右単純 H-余加群代数を得る．

Step 4 について要点のみ述べる．群の 2-コサイクルと同様に Hopf 代数 H に対しても 2-コサイク
ルの概念が定義され，Hopf 代数 H の 2-コサイクル σ に対して，Hσ という積を捻った Hopf 代
数を得ることができる．また H-余加群代数 A も積を捻ることで σA という Hσ-余加群代数を得ら
れる．この変形をコサイクル変形といい，H-余加群代数と Hσ-余加群代数はコサイクル変形で一対
一に対応する．その上この対応は右単純性と加群圏としての森田同値を保つ [NSS, Lemma 3.15]．
従って H ∼= gr(H)σ となる σ を一つとり，Step 3.までで得た右単純 gr(H)-余加群代数すべてのコ
サイクル変形をすることで，同値による重複ものぞいた右単純 H-余加群代数すべてのリストが得ら
れる．注意として，Andruskiewitsch らによる有限次元 pointed Hopf 代数の分類プログラムにおい
て分類済みであるような Hopf代数たち [AS24]についてはこのような σ は必ず存在する．
また Step 3 については，余加群代数の表現圏の加群圏としての同値を余加群代数の言葉に言い換

えた良い判定方法 [IM, Theorem 4.2]がある．
本講演の主結果は，Step 2 までを lifting of quantum linear space と呼ばれるクラスに対して完

了したというものである．

4.3 quantum linear space

lifting of quantum linear space は，uq(sl2) も含むような，pointed Hopf 代数の分類における最
も基本的なタイプの Hopf 代数である．以下でその定義の詳細を述べる．
まずアーベル群 Γ，θ ∈ N，g1, . . . , gθ ∈ Γ と

χi(gi) 6= 1, χj(gi)χi(gj) = 1 (∀i 6= j)

を満たす χ1, . . . , χθ ∈ HomGrp(Γ, k×) からなるデータ D0 = (Γ, (gi)1≤i≤θ, (χi)1≤i≤θ) をとり固定
し，Ni := ord(χi(gi)) とおく．
生成元たちを {x1, . . . , xθ} ∪ Γ とし，関係式を

gxi = χi(g)xig (g ∈ Γ, 1 ≤ i ≤ θ)

xNi
i = 0 (1 ≤ i ≤ θ)

xjxi = χi(gj)xixj (1 ≤ i < j ≤ θ)



とする代数を考える．これは余積

∆(g) = g ⊗ g (g ∈ Γ), ∆(xi) = xi ⊗ 1 + gi ⊗ xi (i = 1, . . . , θ)

により Hopf 代数をなす．この Hopf 代数を U(D0) と書く．加えて U(D0) は次数付け

deg(g) = 0, deg(xi) = 1 (g ∈ Γ, i = 0, . . . , θ)

により次数付き Hopf 代数となる．

定義 4.2. Hopf 代数 H が lifting of quantum linear space であるとは，あるデータ D0 が存
在して 次数付き Hopf 代数として gr(H) ∼= U(D0) となることをいう．

またこのクラスの Hopf 代数の表現圏上の直既約完全加群圏の分類について，特筆すべき先行研
究として Mombelli による分類 [Mom11]がある．この論文では ある U(D0)

coinv の (kΓkΓYD 上での)

左余イデアル部分代数 B ，部分群 F ≤ Γ，F の 2-コサイクル ψ : F × F → k× を使って，

B#(ψkF ) ∼= gr(A); b⊗ f 7→ bf

と分解できるような右単純 U(D0)-余加群代数 A を全て得ている．本稿の新規性としては，このよ
うな分解をしない右単純 U(D0)-余加群代数についても全て得たことが挙げられる．

5 主結果
まず一般論として次を得た．

定理 5.1. 有限次元次数付き Hopf 代数 U，有限次元次数付き U -余加群代数 L について，U の次数
付けの 0 番目がある群 G の群環 kG であるならば次は同値である．

• L は 右 U -単純.

• ある F ≤ G と F の 2-コサイクル ψ について，L は U coinv#(ψkF ) の斉次 U -余加群部分代
数である．

ここで細かな記号の定義は省くが，我々の U = U(D0) の場合では，部分群 F ≤ Γ と F の 2-コ
サイクル ψ について，U(D0)

coinv#(ψkF ) は次と同型となる．

命題 5.2. 代数 A(F, ψ) を生成元 {ug | g ∈ F} ∪ {x1, . . . , xθ}，関係式

uguh = ψ(g, h)ugh, ugxi = χi(g)xiug, xNi
i = 0, xjxi = χi(gj)xixj (i 6= j)

で定める．するとこれは

ρ(ug) = g ⊗ ug, ρ(xi) = xi ⊗ 1 + gi ⊗ xi, deg(ug) = 0, deg(xi) = 1

により次数付き U(D0)-余加群代数となる．

系 5.3. 任意の有限次元次数付き右単純 U(D0)-余加群代数は，ある部分群 F ≤ Γ, F の 2-コサイク
ルについて A(F, ψ) の斉次 U(D0)-余加群部分代数として得られる．



A(F, ψ) の斉次余加群部分代数は，[SS] で導入された余イデアル部分代数の分類手法を真似ること
で全て与えることができる．次ではこれにより得られた結果を述べる．
以下では略記のため任意の自然数 k について [k] := {1, . . . , k} とかく．部分群 G ≤ Γ, G の 2-コ
サイクル ψ : G×G→ k に対して，[θ] 上に同値関係 ∼G,ψ を次で定める．

i ∼G,ψ j :⇐⇒ gig
−1
j ∈ G かつ任意の g ∈ G について χi(g) =

ψ(g, gig
−1
j )

ψ(gig
−1
j , g)

χj(g).

定義 5.4. (G,ψ) の簡約データとは，Λ := [θ]/ ∼G,ψ で添え字づけられた行列たち (CJ)J∈Λ のこと
で各 CJ がサイズ #J×#J の簡約階段行列であるもののことをいう．

以下では (G,ψ) の簡約データ (CJ)J に対し，各行列を CJ = (cJi,j)i,j と表示する．各 J ∈ Λ に
ついて，J = {i1, . . . , in} (i1 < · · · < in,#J = n) と表示し次のように置く．

χJ := χi1 , gJ := gi1 , NJ := Ni1 , y
(J)
k,p := cJk,pgi1g

−1
ip
xip .

命題 5.5. 生成元を
{ug | g ∈ G} t {W (J)

k | J ∈ Λ, k ∈ [rank(CJ)]}

とし，関係式を g, h ∈ G, J,K ∈ Λ, k ∈ [rank(CJ)], ℓ ∈ [rank(CK)] について，

uguh = ψ(g, h)ugh

ugW
(J)
k = χJ(g)W

(J)
k ug

W
(K)
ℓ W

(J)
k = χJ(gK)W

(J)
k W

(K)
ℓ (J 6= K or k 6= ℓ)

W
(J)
k

NJ

= 0

とする代数は，余加群構造
ρ(ug) = g ⊗ ug

ρ(W
(J)
k ) = gJ ⊗W

(J)
k +

#J∑
p=1

y
(J)
k,p ⊗ ugi1g

−1
ip

により U(D0)-余加群代数をなす．またこれは次数付き U(D0)-余加群代数であり，

deg(ug) = 0, deg(W
(J)
k ) = 1

という次数付けを持つ．

上記の U(D0)-次数付き余加群代数を L(G,ψ; (CJ)J) とかく．

定理 5.6. 任意の次数付き右単純 U(D0)-余加群代数 L に対して，ある Γ の部分群 G と G の 2-コ
サイクル ψ，(G,ψ) の簡約データ (CJ)J が存在して，次数付き U(D0)-余加群代数として

L ∼= L(G,ψ; (CJ)J)

となる．



これで次数付き右単純 U(D0)-余加群代数をすべて得るという Step 1 の目標は達成された．Step

2 については [NSS] で行っている方法と大枠は同じであるのでここでは詳細は省略し結果のみを述
べる．

定義 5.7. (G,ψ) の compatible data (γ, ζ) とは，J,K ∈ Λ, k ∈ [rank(CJ)], ℓ ∈ [rank(CK)] で
添え字づけられたスカラーたち γ = (γ

(J,K)
k,ℓ )J,K,k,ℓ と J ∈ Λ で添え字づけられたスカラーたち

ζ = (ζ(J))J の組 (γ, ζ) からなり，任意の J,K ∈ Λ, k ∈ [rank(CJ)], ℓ ∈ [rank(CK)] について

• (χJχK 6= ψgJgK or gJgK /∈ G) =⇒ γ
(J,K)
k,ℓ = 0

• (χJ
NJ 6= ψgJNJ or gJ

NJ /∈ G) =⇒ ζ(J) = 0

の両方を満たすもののことをいう．ここで，任意の f ∈ Gについて ψf は ψf (g) :=
ψ(g,f)
ψ(f,g) (g ∈ G)

で定まる群準同型 ψf : G→ k× のこと．

命題 5.8. compatible data (γ, ζ) について，生成元を

{ug | g ∈ G} t {W(J)
k | J ∈ Λ, k ∈ [rank(CJ)]}

とし，関係式を g, h ∈ G, J,K ∈ Λ, k ∈ [rank(CJ)], ℓ ∈ [rank(CK)] について，
uguh = ψ(g, h)ugh

ugW
(J)
k = χJ(g)W

(J)
k ug

W
(K)
ℓ W

(J)
k − χJ(gK)W

(J)
k W

(K)
ℓ = γ

(J,K)
k,ℓ ugJgK (J 6= K or k 6= ℓ)

W
(J)
k

NJ

= ζ(J)ugJNJ

とする代数とする．するとこれは余加群構造
ρ(ug) = g ⊗ ug

ρ(W
(J)
k ) = gJ ⊗W

(J)
k +

#J∑
p=1

y
(J)
k,p ⊗ ugi1g

−1
ip

により U(D0)-余加群代数をなす．

上記の U(D0)-余加群代数を A(G,ψ; (CJ)J; γ, ζ) とかく．

定理 5.9. 任意の右単純 U(D0)-余加群代数 A に対し，ある部分群 G ≤ Γ，G の 2-コサイクル G，
その簡約データ (CJ)J ，compatible data (γ, ζ) が存在して，U(D0)-余加群代数として

A ∼= A(G,ψ; (CJ)J; γ, ζ)

となる．

従って gr(H) ∼= U(D0) となる H，すなわち lifting of quantum linear space H については，全
ての右単純 gr(H)-余加群代数を与えたこととななるので Step 2 が完了した．あわせて Step 4 を実
行すれば全ての右単純 H-余加群代数を得ることができる．
また，上記の定理の単なる言いかえではあるが現段階でも Rep(U(D0)) 上の直既約完全加群圏は
全て与えたこととなる．
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